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Dual-Point Design of Transonic Airfoils Using the Hybrid
Inverse Optimization Method

Hyoung-Jin Kim* and Oh-Hyun Rho+
Seoul National University, Seoul 151-742, Republic of Korea

A new dual-point design procedure has been developed to improve the aerodynamic performance of
transonic airfoils at two design points. A target pressure distribution at each design point was optimized
by a genetic algorithm. Single-point design was performed to make an airfoil that produced given target
pressures and satisfied specified geometric constraints at each design point. Following this, several inter-
mediate airfoils were made by the hybrid inverse optimization method. A redesigned airfoil of dual-point
design was found using the weighted average of intermediate airfoil shapes, based on the linear variation
assumption. Two examples of dual-point design to improve the performance at an off-design condition
are presented. These design examples show that the dual-point design procedure presented in this paper
is very efficient for the multipoint design of transonic airfoils.

Nomenclature
C,, C, C4, = lift, drag, and wave drag coefficient
Cp, Cpe = target and computed pressure coefficient
c = airfoil chord
M, M., = local, freestream Mach number
Rn = noise radius
t = airfoil maximum thickness
w = weighting factor
Ay = vertical displacement of airfoil surface point
Subscripts
i = index of airfoil surface grid points
0 = value of RAE2822
1,2 = first and second design point

Introduction

N the aerodynamic design of transonic airfoils, drag was

greatly reduced at the design point by using single-point
designs. However, such airfoils often showed poor perfor-
mance in off-design conditions. Aerodynamic performance
may be improved if a dual-point design procedure can be per-
formed for the consideration of two design conditions. Dual-
point design procedures using direct numerical optimization
have already been demonstrated.' The number of geometric
airfoil configurations evaluated in the dual-point design pro-
cess in Ref. 1 ranged from 61 to 105. Too much computational
time was required, therefore, when compared with that of the
inverse method by Mineck et al.,” which requires about six
analysis cases and two design cases to be run.

Alternative dual-point design procedures using an inverse
design method were applied for transonic airfoil design by
Mineck et al.”> They used two procedures: airfoil shape aver-
aging and target pressure averaging, with an assumption that
aerodynamic properties vary linearly with the weighting factor
of airfoil shape averaging. It was found that the former was
better for the specified design problem.
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The objective of the present study was to demonstrate a new
dual-point design procedure for transonic airfoils using the hy-
brid inverse optimization method.”> A new objective function
was defined by the author utilizing the versatility of the hybrid
inverse optimization method. For the specification of the tar-
get pressure at each design point, an existing target pressure
optimization code* was used with a genetic algorithm (GA)
(Ref. 5).

This paper will present some details of the procedure used
in the dual-point design, and some examples of Mach design
and o design. The dual-point design results will be compared
with those of the single-point design.

Flow Analysis

An existing two-dimensional Navier—Stokes solver devel-
oped by Hwang® was used for flow analysis. A Reynolds-av-
eraged two-dimensional compressible Navier—Stokes equation
was used in conservation form. Roe’s flux difference splitting
(FDS) scheme was adopted for the space discretization; the
MUSCL approach with flux limiter was employed to obtain
higher-order accuracy. Beam and Warming’s alternating direc-
tion implicit (ADI) method was used in the implicit part. Tur-
bulence effects were considered using the Baldwin—Lomax
model with relaxation technique. To improve convergence, lo-
cal time stepping was applied. A C-type grid system around
the airfoil was generated by a conformal mapping technique.
We used 135 points in the chordwise direction, 41 points in
the normal direction, and 95 points on the airfoil surface.

To wvalidate this flow solver, the flowfield around the
RAE2822 airfoil was analyzed with a flow condition of M.. =
0.730, @ = 2.79 deg, and Re = 6.5 X 10°

Figure 1 shows the surface pressure distribution of flow
analysis and the experimental result.” The computed pressure
compares well with the experimental data, with the exception
of the shock strength, which was overestimated. In Table 1,
analyzed lift coefficient is in good agreement with measured
value; however, drag is overestimated (as in Ref. 8).

Hybrid Inverse Optimization Method

An auxiliary ordinary differential equation [modified Gara-
bedian-McFadden (MGM) equationg] was used to correlate the
difference between the computed surface and target pressures
to modify the airfoil geometry:

FoAy + F\Ay, + FAy. =R, (R=Cp—Cp) (1)
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Fig.1 Comparison of computed and measured surface pressure
distribution.

where coefficients F,, F,, and F, are nonnegative constants
chosen to provide a stable iterative process, and R is the re-
sidual. The MGM equation is solved using a finite difference
scheme. A typical equation evaluated at the ith surface grid
point is

AiAyHl + BiAyi + CiAYi—l =R; (2)

The detailed expressions for coefficients A,, B,, and C, are
given by Malone et al.” The algebraic equations [Eq. (2)] forms
a tridiagonal system and can be written as

[M1{Ay} = (R} 3)

The objective function is defined to solve Eq. (3) with an
optimization technique, as follows:

F(Ay) = 3|[M1{Ay} - (R}]? )
The gradient of the objective function is given by
VF(Ry) = [M](M1{By} — {R}) 5)

A penalty function method was used to specify the geomet-
ric constraint. The objective function [Eq. (4)] was modified
by adding the penalty function term, as follows:

®(Ay,) = F(Ay,) + r,P(Ay,) (6)

where P(Ay,) is the penalty function and r, is the multiplier.
The solution of the system of Eq. (2) can be obtained by find-
ing a vector { Ay} that minimizes the objective function [Eq.
(6)]. The conjugate gradient method'’ is used to minimize the
objective function [Eq. (6)]. The computational time required
to calculate the objective function and its derivative is negli-
gible compared with the time required by the flow solver.

The previous method was developed by Santos et al.,” and
is referred to as the hybrid inverse optimization method be-
cause it solves the inverse design problem with the optimiza-
tion technique.

Dual-Point Design Procedure

To perform dual-point design, we defined a new objective
function that averages the two objective functions of two de-
sign points, as follows:

1—

MRy} — (Ra) |

)]

F(Ay)=Z|[M1(By) ~ (Ry}|*+

Table 1 Comparison of measured and
predicted aerodynamic coefficients

C, Cy C..
Experiment’ 0.803  0.0168 —0.099
Numerical result® 0.7950 0.01884 —0.09513
(B-L model)
Numerical result 0.7971 0.01892 —0.09592
(current solver)

Grid Generation

‘ Flow Solver
[At Design Point 1] At Design Point 2|
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Calculation || Calculation
Minimization of
Object Function
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Geometry
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Fig. 2 Flowchart of DTAD routine for single-point design.

Figure 2 shows the flowchart of the dual-point transonic
airfoil design (DTAD) routine. First, a baseline airfoil is se-
lected, and a grid system is generated around the airfoil. The
surface pressure is obtained from the flow solver at each design
point. The hybrid inverse optimization method is used to ob-
tain vertical displacements of airfoil surface grid points re-
ducing the objective function [Eq. (7)] and satisfying the
geometric constraints. The grid system is then modified
algebraically for the new airfoil. This design cycle is repeated
until the airfoil modification is sufficiently small.

If wis 1 or 0, Eq. (7) comes to Eq. (4), and the DTAD
routine becomes the routine for single-point design, which is
referred to as the TAD (transonic airfoil design) routine.”*

To find a vector { Ay} that minimizes the objective function
of Eq. (7) is to find an airfoil that gives a surface pressure
distribution as close to the target pressure as possible at both
design points. It is expected that the DTAD routine will pro-
duce better airfoils than those designed simply by averaging
the airfoil shape or target pressure.” There is no guarantee,
however, that the output airfoil from the DTAD routine would
be subject to design constraints such as the C, constraint. Thus,
the output airfoil is only used as the intermediate airfoil, and
the optimum airfoil is sought in the design space of interme-
diate airfoils. To find the optimum airfoil efficiently, it is as-
sumed that the aerodynamic coefficients such as C, and C, vary
linearly with the weighting factor of airfoil shape averaging.
This assumption was made by Mineck et al.,” and found to be
reasonable for two sufficiently close design points. This as-
sumption will be referred to hereafter as the linear variation
assumption (LVA). The accuracy of this assumption is im-
proved by adding the even-weight averaged airfoil of the two
single-point designed airfoils as another intermediate airfoil.

The dual-point design procedure suggested in this study be-
gins with optimizing target pressures at each design point. A
single-point design is performed with the optimized target
pressure at each design point by the TAD routine. The two
designed airfoils are then analyzed at the other design point.
Then the DTAD routine is run several times, changing the
value of w to produce intermediate airfoils. In this study, five
values of w were used: 0.1, 0.3, 0.5, 0.7, and 0.9. There are
now eight intermediate airfoils; two single-point designed air-
foils by TAD, one even-weight averaged airfoil of the two,
and five airfoils produced by the DTAD routine with five
weighting factors.
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The design space is inside the convex polygon made of the
aerodynamic coefficients of intermediate airfoils in the w vs
C, and w vs C, graphs. To find the optimum airfoil in the
design space, linearly interpolated aerodynamic coefficients are
obtained by applying the LVA to three airfoils selected from
the eight intermediate airfoils. The process is repeated for
every possible combination of three airfoils of the eight inter-
mediate airfoils. If the optimum airfoil is not subject to the
imposed constraints or needs to be improved, the target pres-
sure at one design point is modified or reproduced with some
variation of the C, and/or the C, value. Then the TAD and
DTAD routine is run again to produce supplementary inter-
mediate airfoils and the previously mentioned searching pro-
cedure is repeated. However, only one dual-point design cycle
was required to obtain satisfactory results in all design ex-
amples studied here. If the optimum airfoil is found to be sat-
isfactory, the shape of the optimum airfoil is constructed from
the linear combination of three base intermediate airfoils with
Eq. (8), and then analyzed at both design points to ascertain
the predicted aerodynamic coefficients:

N N
Yi= 2 WiVijs 2 w; =1 ®)
J=1 J=1

One cycle of the dual-point design procedure requires four
analysis cases, two runs of TAD and five runs of DTAD. The
TAD routine requires less than 1.5 times the cost of an anal-
ysis, and the DTAD routine requires less than 2.5 times the
cost of an analysis. Thus, one complete cycle of the dual-point
design procedure requires less than 20 times the cost of an
analysis. This is a much smaller computational load compared
with that of Hager et al.,' where the flow solver was run more
than 60 times for the direct numerical optimization. If the
smaller number of w is used for the DTAD routine, the com-
putational time for a dual-point design can be reduced. How-
ever, this reduces the area of the design space, and may result
in the failure to find the optimum airfoil in the design space
of intermediate airfoils.

Optimization of Target Pressure

A target pressure optimization code for the optimization of
target pressures for transonic airfoil inverse design has been
developed by the authors.* Figure 3 shows the characteristic
surface pressure distribution for transonic airfoils defined by
eight points. Shape functions are used for interpolation be-
tween these points. The location of characteristic points, local
Mach number at each point, and the coefficients of shape func-
tions are used as design variables. Shape functions, defined by
van Egmond,'" were partially used, and a few shape functions
were redefined for simplicity and efficiency. The boundary-
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Fig. 3 Schematic representation of target pressure.

layer calculation was avoided to reduce computational time.
Instead, the slope of the pressure distribution was checked as
the flow separation criteria. Some details are shown here for
completeness.

Stagnation Flow Region (4-3, 4-5)
We used a stagnation flow shape function,' defined by ap-

proximating the potential flow velocity distribution around el-
liptic cylinders (for small x/c and small incidence angle):

(1 +da,) 4 |das—=* |:da2+ da3-da4-£:| 1 - da_v,-f
c| V c

7]

2
- da;,-f + ida?
%)
(+ sign for upper surface and — sign for lower surface).

da,—da, represent the design variables that should be adjusted
by the optimization procedure. Nose radius and incidence an-
gle may be estimated from

(RIC)nose = (0.5/das) - dai(l — M2), o =dar,-\/ (1 — M2) (rad)
Rooftop Region (3-2, 5-6)
M = db, + dbi[(x/c) — (x/c),]" " (10)

Index b, refers to the starting point of the region.

Shock Relation (2-2')

Shock wave is specified when M exceeds 1.1 at control point
2. The shock thickness value was set to 0.05¢. In viscous air-
foil flow, the pressure jump measured at the foot of the shock
is less than the Rankine—Hugoniot pressure jump. A modified
Rankine—Hugoniot relation of the following form was used
for an approximation of pressure jump'*

2
P2y Y Az -,

055<A <075 (11)
Pa v+ 1

Here, the range of the A value is determined from experi-
mental data in Ref. 12, and here, A is set to 0.65.

Constant Pressure Region Behind Shock (2’ -2")

It is known that a pressure plateau behind the shock wave
is necessary to stabilize the boundary layer.”” A constant pres-
sure distribution is specified for length /, [ being the design
variable. However, it is not intended to stabilize the boundary
layer by varying L

Pressure Recovery Region on Upper Surface (2"-1)

This region might be represented by an approximating func-
tion of Stratford pressure distribution. A straight line connect-
ing two points was used for simplicity. C, at the trailing edge
is set to 0.2.

Pressure Recovery Region on Lower Surface (6-7)
A fourth-order polynomial is defined for this region as

= Cc Cc
3 4
+ de, (f - ﬁ) + de, (f - ﬁ) (12)
Cc Cc Cc Cc

Rear Loading Region (7-8)
For this region a simple polynomial is defined as

X Xy X Xy ?
M =M, + dd, (———>+dd2<———> (13)
C C C C



KIM AND RHO 615

Characteristic points and shape functions presented previ-
ously can represent target pressure distribution around the tran-
sonic airfoil. Not all of them are independent, and 15 design
variables were used for optimization of the target pressure dis-
tribution.

An approximation of the maximum airfoil thickness is ob-
tained by the following equation'":

(14)

<£> _ Vi f (Cp. + Cp) <g>
2 o 2 c

c

However, Eq. (14) does not consider effects of incidence
angle, and was found to give deviated value from the exact
one for various range of Mach numbers and incidence angle.
Here, it was assumed that airfoils with the same value of Eq.
(14) at given flow conditions have the same maximum thick-
ness. The approximated maximum thickness value of baseline
airfoil that is calculated with Eq. (14) was used as the input
value for the maximum thickness in the target pressure opti-
mization.

A relation to estimate the magnitude of wave drag has been
proposed by Campbell'*:

Cd,, = [0.04/t/c)" )M, — 1)* (15)

The objective function of this optimization problem is se-
verely nonlinear, and even discontinuous." Thus, a robust op-
timization technique that does not use the gradient information
of the objective function should be used.

A GA is a searching algorithm based on natural selection
and survival of the fittest. It has become popular recently be-
cause of its robustness and capability for finding the global
minimum. In this study, the Genocop code,” which uses a GA,
was applied for target pressure optimization.

Results and Discussion
All design examples were performed on the RAE2822 air-

foil. The primary design point was M, = 0.730, o = 2.7 deg,
and Re = 7 X 10°

Mach Design

The first design example was performed with a Mach num-
ber variation for the secondary design point. The secondary
design point was selected as M, = 0.710 with other conditions
unchanged.

The target pressure at the primary design point was opti-
mized by GA. The objective of this optimization was to obtain
a target pressure that has less wave drag than RAE2822, with
lift, nose radius, and maximum thickness being almost the
same. To obtain the optimal target pressure, the optimization
problem was defined as

minimize Cgw
subjectto 1) C, — 0.002 = C, = Cy + 0.002

2) 1, = 0.001 =1 = 1o+ 0.003
3)Co— 002=C,,=C,o + 0.02

4) Rn = Rn,
dCp . .
5) d_ = 2.3 (for the region behind the shock)
x

(16)

The fifth constraint on the slope of the pressure is taken
from Ref. 13 to avoid flow separation after shock. Some other

constraints were also imposed to make a reasonable and pos-
sible pressure distribution:

6) 0.4 = Cp, = Cps
7) Cplizoa =0
8) Cp|icos =0
9) —04=Cps=0

where the subscripts are the control point numbers in Fig. 3.
All of the constraints were included in the objective function
as the penalty function term with proper weighting factors. GA
was run with the population number of 200 and maximum

10000 -
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_.E 10 = Average except the worst 10%
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Fig. 4 Evolution of populations in target optimization.
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Fig.5 Aerodynamic properties of intermediate and designed air-
foils (Mach design): M, = 0.730, M, = 0.710, a = 1.7 deg, and
Re =7 X 10°
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Table 2 Comparison of baseline and designed airfoils (Mach design)

Primary design point

Secondary design point

[

C, Cu C,. C, C, C,, % Area
Baseline 0.7796 0.01945 —0.09670 0.7452 0.01533 —0.08839 12.1 0.0778
(RAE2822)
1-point design 0.7929 0.01706 —0.09974 0.7478 0.01570 —0.09460 12.2 0.0790
Mach design 0.8043 0.01815 —0.1009 0.7593 0.01552 —0.09308 12.2 0.0790

Target
- — — RAE2822
A0r e Primary-Point Design
Mach design i
15 T ———— ‘ !
00 02 04 06 038 1.0
a) x/c
15

Target
- — — RAE2822
404 e Primary-Point Design
Mach Design
15 ‘ : e ; \ ‘ -
0.0 02 04 06 0.8 1.0
b) x/c

Fig. 6 Results of dual-point Mach design: surface pressure com-
parison at a) primary design point (M, = 0.730), and b) secondary
design point (M, = 0.710).

generation number of 1000. Computational time for target op-
timization with GA was less than 10 min, using a Pentium
personal computer running at 120 MHz. Figure 4 shows the
convergence history of the objective function value with in-
creasing generation numbers. The minimum fitness value con-
verges in a stepwise manner, but the average value oscillates
and does not converge to a specific value. This is because of
the severe nonlinearity of the objective function. Average fit-
ness values, except the worst 10% of populations, are almost
the same order with the minimum value.

The target pressure at the secondary design point was also
optimized with the optimization problem [Eq. (16)]. With a
target pressure at each design point, eight intermediate airfoils
were produced from the TAD and DTAD routines, and airfoil
shape averaging. Area constraint was specified in the TAD and
DTAD routines as

0.078 = airfoil area = 0.079 a7)

The area constraint was specified to keep the airfoils similar.
Other geometric constraints such as maximum thickness and
nose radius constraints can also be considered in the TAD and
DTAD routines. However, those were specified only in the

0.05

ylc
RAE2822

------ 1-Point Design
Mach Design

0.00

005

— T R
00 02 04 06 08 10

Fig. 7 Mach design: airfoil geometry comparison.

\
Secondary Design Point \
\

3| ___ RAE2822 !
—————— Primary-Point Design

30 Mach Design ‘ \
o ' N
067 069 07 0.73 0.75
Mach #

Fig. 8 Mach design: off-design performance at a = 2.7 deg.

target pressure generation level, and not in the inverse design
code.

The weight-averaged airfoils then naturally satisfied the area
constraint, but not necessarily the thickness and nose radius
constraints. Figure 5 shows lift and drag (L/D) coefficients of
these intermediate airfoils. The values of w = 1 and O represent
the primary-point designed airfoil and the secondary-point de-
signed airfoil, respectively. Here, the design problem for
searching the optimum was defined as

maximize (C,/C.), + (C,/C,)>
subjectto Cy; = Cyo (18)
Cl()2 = Cl()2

The design space is inside the convex polygon of the inter-
mediate airfoils in Fig. 5. With LVA, the optimum airfoil was
sought in the design space. In this case the intermediate airfoil
produced by the DTAD routine with w = 0.7, which is a vertex
of the polygon, was found to be the optimum airfoil of the
defined design problem. Figure 6 shows surface pressure dis-
tribution of the designed airfoil at two design points. Shock
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Table 3 Comparison of baseline and designed airfoils (a design)

Primary design point

Secondary design point

Frano

C, Cu C,. C, C, C,, % Area
Baseline 0.7796 0.01945 —0.09670 0.6045 0.01345 —0.09689 12.1 0.0778
(RAE2822)
1-point design 0.7929 0.01706 —0.09974 0.6087 0.01419 —0.1048 12.2 0.0790
a design 0.8099 0.01758 —0.1038 0.6269 0.01388 —0.1078 12.2 0.0790

40y 0 ------ Primary-Point Design |
Alpha Design
A5 I e N
00 02 04 06 0.8 10
a) x/c

— — — RAE2822
404  ------ Primary-Point Design
——— Alpha-Design
15 T ‘ —
0.0 02 04 06 08 1.0
b) x/c

Fig. 9 Results of dual-point o design: surface pressure compar-
ison at a) primary design point (a; = 2.7 deg), and b) secondary
design point (o, = 1.7 deg).

strength of the two-point designed airfoil is stronger at the
primary point and weaker at the secondary point than the pri-
mary-point designed airfoil. Figure 7 shows the airfoil con-
tours of the baseline and designed airfoil. Table 2, which com-
pares baseline and designed airfoils, shows that the constraints
on aerodynamic coefficients and contour area are exactly sat-
isfied. It can also be noted that the maximum thickness con-
straint that was specified in the target pressure optimization
level was also satisfied. The data on the nose radius constraint
were not presented here. However, it is evident from Fig. 7
that baseline and designed airfoils have almost the same value
of nose radius.

Figure 8 shows off-design performance of the designed airfoils.
The L/D value of the primary-point designed airfoil is increased
at the primary design point, but reduced at the secondary design
point. The L/D value has remarkably been enhanced at the flow
condition range between the two design points.

a Design

The second design case was performed with an o variation
for the secondary design point. The secondary design point
was selected as a, = 1.7 deg with other conditions unchanged
from the primary design point. The target pressure of the pri-
mary design point was unchanged. The target pressure at the
secondary design point was optimized with the optimization

0.05
ylc

RAE2822
------ Primary-Point Design
0.00 e o
Alpha Design

005

- i T T T T T T r
00 02 04 06 08 10
x/c

Fig. 10 « design: airfoil geometry comparison.
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—————— ' Primary-Point Design
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300 1 ‘ !

e S T—
11 13 15 17 19 21 23 25 27 29 31
angle of Incidence ( deg. )

Fig. 11 « design: off-design performance at M = 0.730.

problem [Eq. (16)]. The same procedure as the first design case
was performed with the area constraint of Eq. (17). Eight in-
termediate airfoils were produced as in the previous design
case. In this case the design problem is defined as

minimize C, + C,
subjectto C,, = Cy
C12 = Cl()Z (19)

The optimum airfoil was sought in the design space using
the linear variation assumption. In this case, the optimum air-
foil that has the minimum value of summation of drag coef-
ficient was found to be the primary-point designed airfoil. This
is because the primary-point designed airfoil has much less
drag than any other intermediate airfoils. However, the purpose
of dual-point design is to improve the performance of off-
design conditions. Thus, the objective function in Eq. (19) was
modified to minimize the weighted summation of drag, instead
of even weight summation. Here, the weight of 0.3 was put
on the drag at the primary point, and the weight of 0.7 on the
drag at the secondary point; a new optimum airfoil was found
in the design space.
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Fig. 12 Validation of linear variation assumption: a-design case.

The optimum airfoil C; and C, values predicted by the LVA
and analyzed by a flow solver are marked by triangles.

Figure 9 shows surface pressure distribution of the designed
airfoil at two design points. As in the Mach design case, shock
strength of the two-point designed airfoil is stronger at the
primary point and weaker at the secondary point than the pri-
mary-point designed airfoil. Figure 10 compares the airfoil
contours of the baseline and designed airfoil. Table 3 shows
that the constraints on aerodynamic coefficients and the con-
tour area are exactly satisfied. The maximum thickness con-
straint that was specified in the target pressure optimization
level was also satisfied.

Figure 11 shows off-design performance of the designed air-
foil. Using the dual-point design, the L/D value at incidence
angles lower than 2.7 deg were remarkably increased com-
pared with the single-point designed airfoil.

Validation of the LVA

To validate the LVA again, airfoils linearly interpolated by
Eq. (8) from the two single-point designed airfoils were ana-
lyzed by the flow solver. Figure 12 shows the results for the
a design case. The solid line represents a line connecting w =
0 and w = 0.5, and a line connecting w = 0.5 and w = 1.
Analyzed values compare well with the solid line. The same

calculation was conducted for the Mach design case, and a
similar result was obtained.

These results suggest that the LVA on the aerodynamic prop-
erties of the weight-averaged airfoil is reasonable, and that it
is very efficient for finding the optimum airfoil in the design
space of intermediate airfoils without any flow analysis.

Concluding Remarks

A new dual-point design procedure has been developed. The
hybrid inverse optimization method has been extended for
dual-point design. The LVA was used to find an optimum air-
foil in the design space of intermediate airfoils. Some design
examples were presented with successful results. The compu-
tational load was much smaller than that of multipoint design
methods using direct numerical optimization.

Some modification can be made to target pressure optimi-
zation code. To consider viscous drag component, boundary-
layer calculation can be included in the target optimization
code with the cost of computational time.

The extension of the present multipoint design method to
three-dimensional wing design problems is straightforward and
in progress.
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